Part Number Hot Search : 
40N120 SP3136F FN3684 P7831132 MAX20003 ECC40 24010 AT45D
Product Description
Full Text Search
 

To Download FDD10AN06A0NL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ?2010 fairchild semiconductor corporation december 2010 fdd10an06a0 rev. a2 fdd10an06a0 fdd10an06a0 n-channel powertrench ? mosfet 60v, 50a, 10.5m ? features ?r ds(on) = 9.4m ? (typ.), v gs = 10v, i d = 50a q g (tot) = 28nc (typ.), v gs = 10v  low miller charge  low qrr body diode  uis capability (single pulse and repetitive pulse) formerly developmental type 82560 applications  motor / body load control  abs systems  powertrain management  injection systems  dc-dc converters and off-line ups  distributed power architectures and vrms  primary switch for 12v and 24v systems mosfet maximum ratings t c = 25c unless otherwise noted thermal characteristics symbol parameter ratings units v dss drain to source voltage 60 v v gs gate to source voltage 20 v i d drain current 50 a continuous (t c < 115 o c, v gs = 10v) continuous (t amb = 25 o c, v gs = 10v, with r ja = 52 o c/w) 11 a pulsed figure 4 a e as single pulse avalanche energy (note 1) 429 mj p d power dissipation 135 w derate above 25 o c0.9w/ o c t j , t stg operating and storage temperature -55 to 175 o c r jc thermal resistance junction to case to-252 1.11 o c/w r ja thermal resistance junction to ambient to-252 100 o c/w r ja thermal resistance junction to ambient to-252, 1in 2 copper pad area 52 o c/w d g s to-252aa fdd series gate source (flange) drain
?2010 fairchild semiconductor corporation fdd10an06a0 rev. a fdd10an06a0 package marking and ordering information electrical characteristics t c = 25c unless otherwise noted off characteristics on characteristics dynamic characteristics switching characteristics (v gs = 10v) drain-source diode characteristics notes: 1: starting t j = 25c, l = 8.58mh, i as = 10a. device marking device package reel size tape width quantity fdd10an06a0 fdd10an06a0 to-252aa 330mm 16mm 2500 units symbol parameter test conditions min typ max units b vdss drain to source breakdown voltage i d = 250 a, v gs = 0v 60 - - v i dss zero gate voltage drain current v ds = 50v - - 1 a v gs = 0v t c = 150 o c- -250 i gss gate to source leakage current v gs = 20v - - 100 na v gs(th) gate to source threshold voltage v gs = v ds , i d = 250 a2-4v r ds(on) drain to source on resistance i d = 50a, v gs = 10v - 0.0094 0.0105 ? i d = 25a, v gs = 6v - 0.015 0.027 i d = 50a, v gs = 10v, t j = 175 o c - 0.020 0.023 c iss input capacitance v ds = 25v, v gs = 0v, f = 1mhz - 1840 - pf c oss output capacitance - 340 - pf c rss reverse transfer capacitance - 110 - pf q g(tot) total gate charge at 10v v gs = 0v to 10v v dd = 30v i d = 50a i g = 1.0ma 28 37 nc q g(th) threshold gate charge v gs = 0v to 2v - 3.5 4.6 nc q gs gate to source gate charge - 9.8 - nc q gs2 gate charge threshold to plateau - 6.4 - nc q gd gate to drain ?miller? charge - 7.8 - nc t on turn-on time v dd = 30v, i d = 50a v gs = 10v, r gs = 10 ? --131ns t d(on) turn-on delay time - 8 - ns t r rise time - 79 - ns t d(off) turn-off delay time - 32 - ns t f fall time - 32 - ns t off turn-off time - - 97 ns v sd source to drain diode voltage i sd = 50a - - 1.25 v i sd = 25a - - 1.0 v t rr reverse recovery time i sd = 50a, di sd /dt = 100a/ s- - 27ns q rr reverse recovered charge i sd = 50a, di sd /dt = 100a/ s- - 23nc
?2010 fairchild semiconductor corporation fdd10an06a0 rev. a2 fdd10an06a0 typical characteristics t c = 25c unless otherwise noted figure 1. normalized power dissipation vs ambient temperature figure 2. maximum continuous drain current vs case temperature figure 3. normalized maximum transient thermal impedance figure 4. peak current capability t c , case temperature ( o c) power dissipation multiplier 0 0255075100 175 0.2 0.4 0.6 0.8 1.0 1.2 125 150 0 20 40 60 80 25 50 75 100 125 150 175 i d , drain current (a) t c , case temperature ( o c) current limited by package 0.1 1 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 0.01 2 t , rectangular pulse duration (s) z jc , normalized thermal impedance notes: duty factor: d = t 1 /t 2 peak t j = p dm x z jc x r jc + t c p dm t 1 t 2 0.5 0.2 0.1 0.05 0.01 0.02 duty cycle - descending order single pulse 100 1000 40 i dm , peak current (a) t , pulse width (s) 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 transconductance may limit current in this region v gs = 10v t c = 25 o c i = i 25 175 - t c 150 for temperatures above 25 o c derate peak current as follows:
?2010 fairchild semiconductor corporation fdd10an06a0 rev. a2 fdd10an06a0 figure 5. forward bias safe operating area note: refer to fairchild application notes an7514 and an7515 figure 6. unclamped inductive switching capability figure 7. transfer characteristics figure 8. saturation characteristics figure 9. drain to source on resistance vs drain current figure 10. normalized drain to source on resistance vs junction temperature typical characteristics t c = 25c unless otherwise noted 0.1 1 10 100 110100 500 v ds , drain to source voltage (v) i d , drain current (a) t j = max rated t c = 25 o c single pulse limited by r ds(on) area may be operation in this 10ms 1ms dc 100 s 10 s 1 10 100 0.1 1 10 500 0.01 i as , avalanche current (a) t av , time in avalanche (ms) starting t j = 25 o c starting t j = 150 o c t av = (l)(i as )/(1.3*rated bv dss - v dd ) if r = 0 if r 0 t av = (l/r)ln[(i as *r)/(1.3*rated bv dss - v dd ) +1] 0 25 50 75 100 34567 i d , drain current (a) v gs , gate to source voltage (v) pulse duration = 80 s duty cycle = 0.5% max v dd = 15v t j = 175 o c t j = 25 o c t j = -55 o c 0 25 50 75 100 0 0.5 1.0 1.5 2.0 v gs = 7v i d , drain current (a) v ds , drain to source voltage (v) v gs = 6v pulse duration = 80 s duty cycle = 0.5% max t c = 25 o c v gs = 10v v gs = 5v 8 10 12 14 16 18 0 1020304050 i d , drain current (a) v gs = 6v v gs = 10v drain to source on resistance(m ? ) pulse duration = 80 s duty cycle = 0.5% max 0.5 1.0 1.5 2.0 2.5 -80 -40 0 40 80 120 160 200 normalized drain to source t j , junction temperature ( o c) on resistance v gs = 10v, i d = 50a pulse duration = 80 s duty cycle = 0.5% max
?2010 fairchild semiconductor corporation fdd10an06a0 rev. a2 fdd10an06a0 figure 11. normalized gate threshold voltage vs junction temperature figure 12. normalized drain to source breakdown voltage vs junction temperature figure 13. capacitance vs drain to source voltage figure 14. gate charge waveforms for constant gate currents typical characteristics t c = 25c unless otherwise noted 0.4 0.6 0.8 1.0 1.2 1.4 -80 -40 0 40 80 120 160 200 normalized gate t j , junction temperature ( o c) v gs = v ds , i d = 250 a threshold voltage 0.9 1.0 1.1 1.2 -80 -40 0 40 80 120 160 200 t j , junction temperature ( o c) normalized drain to source i d = 250 a breakdown voltage 100 1000 0.1 1 10 50 3000 60 c, capacitance (pf) v ds , drain to source voltage (v) v gs = 0v, f = 1mhz c iss = c gs + c gd c oss ? c ds + c gd c rss = c gd 0 2 4 6 8 10 0 5 10 15 20 25 30 v gs , gate to source voltage (v) q g , gate charge (nc) v dd = 30v i d = 50a i d = 11a waveforms in descending order:
?2010 fairchild semiconductor corporation fdd10an06a0 rev. a2 fdd10an06a0 test circuits and waveforms figure 15. unclamped energy test circuit figure 16. unclamped energy waveforms figure 17. gate charge test circuit figure 18. gate charge waveforms figure 19. switching time test circuit figure 20. switching time waveforms t p v gs 0.01 ? l i as + - v ds v dd r g dut vary t p to obtain required peak i as 0v v dd v ds bv dss t p i as t av 0 v gs + - v ds v dd dut i g(ref) l v dd q g(th) v gs = 2v q gs2 q g(tot) v gs = 10v v ds v gs i g(ref) 0 0 q gs q gd v gs r l r gs dut + - v dd v ds v gs t on t d(on) t r 90% 10% v ds 90% 10% t f t d(off) t off 90% 50% 50% 10% pulse width v gs 0 0
?2010 fairchild semiconductor corporation fdd10an06a0 rev. a2 fdd10an06a0 thermal resistance vs. mounting pad area the maximum rated junction temperature, t jm , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, p dm , in an application. therefore the application?s ambient temperature, t a ( o c), and thermal resistance r ja ( o c/w) must be reviewed to ensure that t jm is never exceeded. equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. in using surface mount devices such as the to-252 package, the environment in which it is applied will have a significant influence on the part?s current and maximum power dissipation ratings. precise determination of p dm is complex and influenced by many factors: 1. mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. the number of copper layers and the thickness of the board. 3. the use of external heat sinks. 4. the use of thermal vias. 5. air flow and board orientation. 6. for non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. fairchild provides thermal information to assist the designer?s preliminary application evaluation. figure 21 defines the r ja for the device as a function of the top copper (component side) area. this is for a horizontally positioned fr-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. this graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. pulse applications can be evaluated using the fairchild device spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. thermal resistances corresponding to other copper areas can be obtained from figure 21 or by calculation using equation 2 or 3. equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. the area, in square inches or square centimeters is the top copper area including the gate and source pads. (eq. 1) p dm t jm t a ? () r ja ----------------------------- = area in inches squared (eq. 2) r ja 33.32 23.84 0.268 area + () ------------------------------------ - + = (eq. 3) r ja 33.32 154 1.73 area + () --------------------------------- - + = area in centimeters squared 25 50 75 100 125 0.01 0.1 1 10 figure 21. thermal resistance vs mounting pad area r ja = 33.32+ 23.84/(0.268+area) eq.2 r ja ( o c/w) area, top copper area in 2 (cm 2 ) r ja = 33.32+ 154/(1.73+area) eq.3 (0.645) (6.45) (64.5) (0.0645)
?2010 fairchild semiconductor corporation fdd10an06a0 rev. a2 fdd10an06a0 pspice electrical model .subckt fdd10an06a0 2 1 3 ; rev july 2002 ca 12 8 7e-10 cb 15 14 7e-10 cin 6 8 1.8e-9 dbody 7 5 dbodymod dbreak 5 11 dbreakmod dplcap 10 5 dplcapmod ebreak 11 7 17 18 67.2 eds 14 8 5 8 1 egs 13 8 6 8 1 esg 6 10 6 8 1 evthres 6 21 19 8 1 evtemp 20 6 18 22 1 it 8 17 1 lgate 1 9 3.2e-9 ldrain 2 5 1.0e-9 lsource 3 7 1.2e-9 rlgate 1 9 32 rldrain 2 5 10 rlsource 3 7 12 mmed 16 6 8 8 mmedmod mstro 16 6 8 8 mstromod mweak 16 21 8 8 mweakmod rbreak 17 18 rbreakmod 1 rdrain 50 16 rdrainmod 1.35e-3 rgate 9 20 3.6 rslc1 5 51 rslcmod 1e-6 rslc2 5 50 1e3 rsource 8 7 rsourcemod 6e-3 rvthres 22 8 rvthresmod 1 rvtemp 18 19 rvtempmod 1 s1a 6 12 13 8 s1amod s1b 13 12 13 8 s1bmod s2a 6 15 14 13 s2amod s2b 13 15 14 13 s2bmod vbat 22 19 dc 1 eslc 51 50 value={(v(5,51)/abs(v(5,51)))*(pwr(v(5,51)/(1e-6*250),7))} .model dbodymod d (is=2e-11 n=1.06 rs=3.3e-3 trs1=2.4e-3 trs2=1.1e-6 + cjo=1.25e-9 m=5.3e-1 tt=4.2e-8 xti=3.9) .model dbreakmod d (rs=2.7e-1 trs1=1e-3 trs2=-8.9e-6) .model dplcapmod d (cjo=4.7e-10 is=1e-30 n=10 m=0.44) .model mmedmod nmos (vto=3.5 kp=5.5 is=1e-30 n=10 tox=1 l=1u w=1u rg=3.6) .model mstromod nmos (vto=4.25 kp=80 is=1e-30 n=10 tox=1 l=1u w=1u) .model mweakmod nmos (vto=2.92 kp=0.03 is=1e-30 n=10 tox=1 l=1u w=1u rg=36 rs=0.1) .model rbreakmod res (tc1=9e-4 tc2=5e-7) .model rdrainmod res (tc1=2.5e-2 tc2=7.8e-5) .model rslcmod res (tc1=1e-3 tc2=3.5e-5) .model rsourcemod res (tc1=1e-3 tc2=1e-6) .model rvthresmod res (tc1=-5.3e-3 tc2=-1.3e-5) .model rvtempmod res (tc1=-2.6e-3 tc2=1.3e-6) .model s1amod vswitch (ron=1e-5 roff=0.1 von=-8 voff=-5) .model s1bmod vswitch (ron=1e-5 roff=0.1 von=-5 voff=-8) .model s2amod vswitch (ron=1e-5 roff=0.1 von=-2 voff=-1.5) .model s2bmod vswitch (ron=1e-5 roff=0.1 von=-1.5 voff=-2) .ends note: for further discussion of the pspice model, consult a new pspice sub-circuit for the power mosfet featuring global temperature options ; ieee power electronics specialist conference records, 1991, written by william j. hepp and c. frank wheatley. 18 22 + - 6 8 + - 5 51 + - 19 8 + - 17 18 6 8 + - 5 8 + - rbreak rvtemp vbat rvthres it 17 18 19 22 12 13 15 s1a s1b s2a s2b ca cb egs eds 14 8 13 8 14 13 mweak ebreak dbody rsource source 11 7 3 lsource rlsource cin rdrain evthres 16 21 8 mmed mstro drain 2 ldrain rldrain dbreak dplcap eslc rslc1 10 5 51 50 rslc2 1 gate rgate evtemp 9 esg lgate rlgate 20 + - + - + - 6
?2010 fairchild semiconductor corporation fdd10an06a0 rev. a2 fdd10an06a0 saber electrical model rev july 2002 template fdd10an06a0 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=2e-11,nl=1.06,rs=3.3e-3,trs1=2.4e-3,trs2=1.1e-6,cjo=1.25e-9,m=5.3e-1,tt=4.2e-8,xti=3.9) dp..model dbreakmod = (rs=2.7e-1,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=4.7e-10,isl=10e-30,nl=10,m=0.44) m..model mmedmod = (type=_n,vto=3.5,kp=5.5,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=4.25,kp=80,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=2.92,kp=0.03,is=1e-30, tox=1,rs=0.1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-8,voff=-5) sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-5,voff=-8) sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-1.5) sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-1.5,voff=-2) c.ca n12 n8 = 7e-10 c.cb n15 n14 = 7e-10 c.cin n6 n8 = 1.8e-9 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod spe.ebreak n11 n7 n17 n18 = 67.2 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 i.it n8 n17 = 1 l.lgate n1 n9 = 3.2e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 1.2e-9 res.rlgate n1 n9 = 32 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 12 m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=9e-4,tc2=5e-7 res.rdrain n50 n16 = 1.35e-3, tc1=2.5e-2,tc2=7.8e-5 res.rgate n9 n20 = 3.6 res.rslc1 n5 n51 = 1e-6, tc1=1e-3,tc2=3.5e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 6e-3, tc1=1e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-5.3e-3,tc2=-1.3e-5 res.rvtemp n18 n19 = 1, tc1=-2.6e-3,tc2=1.3e-6 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250))** 7)) } 18 22 + - 6 8 + - 19 8 + - 17 18 6 8 + - 5 8 + - rbreak rvtemp vbat rvthres it 17 18 19 22 12 13 15 s1a s1b s2a s2b ca cb egs eds 14 8 13 8 14 13 mweak ebreak dbody rsource source 11 7 3 lsource rlsource cin rdrain evthres 16 21 8 mmed mstro drain 2 ldrain rldrain dbreak dplcap iscl rslc1 10 5 51 50 rslc2 1 gate rgate evtemp 9 esg lgate rlgate 20 + - + - + - 6
?2010 fairchild semiconductor corporation fdd10an06a0 rev. a2 fdd10an06a0 spice thermal model rev 23 july 2002 fdd10an06a0t ctherm1 th 6 3.2e-3 ctherm2 6 5 3.3e-3 ctherm3 5 4 3.4e-3 ctherm4 4 3 3.5e-3 ctherm5 3 2 6.4e-3 ctherm6 2 tl 1.9e-2 rtherm1 th 6 5.5e-4 rtherm2 6 5 5.0e-3 rtherm3 5 4 4.5e-2 rtherm4 4 3 1.5e-1 rtherm5 3 2 3.37e-1 rtherm6 2 tl 3.5e-1 saber thermal model saber thermal model fdd10an06a0t template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =3.2e-3 ctherm.ctherm2 6 5 =3.3e-3 ctherm.ctherm3 5 4 =3.4e-3 ctherm.ctherm4 4 3 =3.5e-3 ctherm.ctherm5 3 2 =6.4e-3 ctherm.ctherm6 2 tl =1.9e-2 rtherm.rtherm1 th 6 =5.5e-4 rtherm.rtherm2 6 5 =5.0e-3 rtherm.rtherm3 5 4 =4.5e-2 rtherm.rtherm4 4 3 =1.5e-1 rtherm.rtherm5 3 2 =3.37e-1 rtherm.rtherm6 2 tl =3.5e-1 } rtherm4 rtherm6 rtherm5 rtherm3 rtherm2 rtherm1 ctherm4 ctherm6 ctherm5 ctherm3 ctherm2 ctherm1 tl 2 3 4 5 6 th junction case
fdd10an06a0 8 trademarks the following includes registered and unregistered trademarks an d service marks, owned by fair child semiconductor and/or its gl obal subsidiaries, and is not intended to be an exhaustive lis t of all such trademarks. *trademarks of system general corporation, used under license by fairchild semiconductor. disclaime r f airchi ld semiconductor reserves the right to make changes wi thout further notice to any products herein to improve reliability, function, or design. fairchild does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights , nor the rights of others. these specifications do not expand the terms of fairchild?s worldwide terms and conditions, specifically the warranty therein, which covers these products. li fe support policy fai rchil d?s products are not authorized for use as critical co mponents in life support de vices or systems without the express written approval of fairchild se miconductor corporation. as used here in: 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a sign ificant injury of the user. 2. a critical component in any compone nt of a life support, device, or system whose failure to perform can be reasonably expe cted to cause the failure of the life suppo rt device or system, or to affect its safety or effectiveness. p roduct status definitions definition of terms ac cupo wer? auto-spm? build it now? coreplus? corepower? cro ssvolt ? ctl? cu rrent tr ansfer logic? deuxpeed ? du al co ol? ecospark ? ef ficentmax? esbc? fairchild ? fai rchild semi conductor ? fac t qui et series? fact ? fast ? fastvc ore? fet bench? flashwriter ? * fps? f-pfs? frf et ? glo bal power resource sm gre en fps? green fps? e-series? g max ? gto? in tellimax ? isoplanar? megabuck? microcoupler? microfet? micropak? micropak2? millerdrive? motionmax? motion-spm? optihit? optologic ? o ptop lanar ? ? pdp sp m? power- spm? powertrench ? po werxs? pr ogrammable active droop? qfet ? qs ? quiet series? rapidconfigure? saving our world, 1mw/w/kw at a time? signalwise? smartmax? smart start? spm ? ste alth? su perfet ? su perso t?-3 supersot?-6 supersot?-8 supremos ? syncfet? sync-l ock? ?* the power franchise ? the right te chnology for your success? ? tin yb oost? tinybuck? tinycalc? tinylogic ? tinyopto? tin ypower? tin ypwm? tinywire? trifault detect? truecurrent?* se rd es? uhc ? ultra frfet? un ifet? vcx? visualmax? xs? ? dat asheet i dentification product status definition advance info rmation formative / in design datasheet contains the design specifications for product development. specifications may change in any manner without notice. preliminary first production datasheet contains preliminary data; supplementary data will be published at a later date. fairchild semiconductor reserves the ri ght to make changes at any time without notice to improve design. no identification needed full production datasheet contains final spec ifications. fairchild semiconduc tor reserves the right to make changes at any time without notice to improve the design. obsolete not in production datasheet contains specif ications on a product that is discontinued by fairchild semiconductor. the datasheet is for reference information only. anti-counterfeiting policy fai rchild semico nductor corporation?s anti-c ounterfeiting policy. fairch ild?s anti-counterfeiting policy is also stated on our external website, www.fairchildsemi.com, under sales support . co unterfeiting of semiconductor pa rts is a growing problem in the industry. all manuf actures of semiconductor products are expe riencing counterfeiting of their parts. customers who inadv ertently purchase counterfeit parts experience many problems such as loss of brand reputation, substa ndard performance, failed application, and increased cost of production and manufacturing delays. fairchild is taking strong measures to protect ourselve s and our customers from the proliferation of counterfeit parts. fairch ild strongly encourages customers to purchase fairchild parts either directly from fa irchild or from authorized fairchild distributors who are listed by country on our web page cited above. product s customers buy either from fairchild directly or fr om authorized fairchild distributors are genuine parts, have full traceability, meet fairchild?s quality st andards for handing and storage and provide access to fairchild?s full range of up-to-date technical and product information. fairchild and our authorized distributors will stand behind all warranties and wi ll appropriately address and warranty issues that may arise. fairchild will not provide any warranty coverage or ot her assistance for parts bought from unau thorized sources. fairchild is committed to combat this global problem and encourage our customer s to do their part in stopping th is practice by buying direct or from authorized distributors. rev. i5 1 ? ?2010 fairchild semiconductor corporation fdd10an06a0 rev. a2


▲Up To Search▲   

 
Price & Availability of FDD10AN06A0NL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X